
VERILOG for
Sequential Circuits

©COPYRIGHT CHUA DINGJUAN. ALL RIGHTS RESERVED.

Hardware Description Languages (HDLs) are programming
languages for describing digital circuits and systems.

What are HDLs?

Digital Fundamentals

Today, Verilog and VHDL are the two leading HDLs.

Verilog code is used to describe RTL (Register Transfer Level)
designs.

Virtually every chip (FPGA, ASIC, etc.) is designed in part using
one of these two languages.

Xilinx and Altera are the two largest FPGA manufacturers.

+

Input / Output ports, multiple bits

MUX

STRUCTURE & TIME

t1 t2

Page 2

B

C

D

Z

A

CONCURRENCY
time t

time t + 

Verilog…

Verilog is an IEEE 1364 Standard  link here

Used for Modeling, Simulation and Synthesis of digital circuits.

Advantages :

◦ Reduces Design Time  Cost

◦ Improves Design Quality

◦ Vendor and Technology Independence

◦ Easy Design Management

Disadvantages :

◦ Cost (Including training you and me!)

◦ Debugging

Digital Fundamentals Page 3

http://www-inst.eecs.berkeley.edu/~cs150/fa06/Labs/verilog-ieee.pdf

o Verilog is CasE-SeNSitiVe….

o Module Name : Use meaningful identifiers (~bigbox)

o Port Direction : input, output, inout (bidirectional)

o Port Bitwidth : input [4:0] a , output [7:14] y

o Don’t forget the _____! y = 8’hFA

A
B

D

ZC

The Module

A piece of hardware with inputs & outputs : module

Digital Fundamentals

module bigbox (input a, b, c, d,

output z);

// Here is where you work your

// magic!

endmodule

Module
Name Port Declaration

Page 4

A
B

D

ZC

Value =
number of binary bits

A
B

D

ZC

Continuous Assignment (Dataflow)

assign statements are used to model combinational logic

Digital Fundamentals

o Whenever there’s an event on the RHS signal, expression is

evaluated and assigned ( = prop. delay)  continuously monitored

o Multiple statements can be executed in parallel (concurrently)

o wire is used to represent an internal connection

P

Q

R

Order of
stmts?

module bigbox (input a, b, c, d,

output z);

wire p, q, r;

assign z = p ^ q ^ r;

assign q = ~c;

assign p = a & b;

assign r = ~(c | d);

endmodule

internal connections

1

2

3

4

0



01B

P

Z

1



0

1

Page 5

Useful Operators

o Boolean (bit-wise), logical, arithmetic, concatenation.

o Use brackets for readability, take note if *synthesizable.

Page 6

Operator Description Examples: a = 4’b1010, b=4’0000

!, ~ Logical negation, Bit-wise NOT !a = 0, !b =1, ~a=4’b0101, ~b=4’b1111

&, |, ^ Reduction (Outputs 1-bit) &a = 0, |a=1, ^a = 0

{__,__} Concatenation {b, a} = 8’b00001010

{n{___}} Replication {2 {a} } = 8’b10101010

*, /, %, Multiply, *Divide, *Modulus 3 % 2 = 1, 16 % 4 = 0

+, - Binary addition, subtraction a + b = 4’b1010

<< , >> Shift Zeros in Left / Right a << 1 = 4’b0100, a >> 2 = 4’b0010

<, <=, >, >= Logical Relative (1-bit output) (a > b) =

==, != Logical Equality (1-bit output) (a == b)= (a != b)=

&, ^, | Bit-wise AND, XOR, OR a&b = a|b =

&&, || Logical AND, OR (1-bit output) a&&b = a||b =

?: Conditional Operator <out> = <condition> ? If_ONE : if_ZERO

High

Low

P
re

ce
d

en
ce

Conditional Operator…

The ?: conditional operator allows us to select the output
from a set of inputs based on a condition.

Digital Fundamentals

module mystery (input s, input [1:0] d,

output y);

assign y = s ? d[1] : d[0];

endmodule

<output> = <condition> ? If_ONE : If_ZERO

s= 1  y = d[1], s= 0  y= d[0]

o This expression is evaluated whenever there is an event on any input.

o What is this block?

Page 7

d[1]

d[0]

s

y?

module mux21(input s, input d[1:0],

output ___ y);

endmodule

always @ (s, d)

begin

if (sel == 1’b0)

y= d[0];

else

y= d[1];

end

Behavioral, higher-level description of logic.

2 assignment types : Blocking & Non-Blocking

Digital Fundamentals

Procedural Assignment : always

Conceptually, the always block runs once when
a signal in sensitivity list (s,d) changes value.

Statements executed sequentially & evaluated
instantaneously.  Order matters!

begin and end behave like
parentheses/brackets for conditional statements.

MUX
d[0]

d[1]

s

y

Anything assigned in an always block
must be declared as type reg

Page 8

o always@(*) includes all signals that are read in statements.

o Statements within always block are executed sequentially.

o Variables within sensitivity list are very important!

o if--else if--else, case, for, while can only be used in

procedural assignments (always blocks)

o Multiple always blocks run in parallel, concurrently. (*Race)

o No assign in always blocks!

o If using posedge / negedge, all signals in sensitivity list needs to be

specified with either posedge / negedge.

Registers
o Anything assigned in an always block must be declared as type reg

o In Verilog, the term register (reg) simply means a variable that can

hold a value. (cf. wire)

o Values of registers can be changed instantaneously.

Some notes on: always

Digital Fundamentals Page 9

Equivalence…

Digital Fundamentals

A
B

D

ZC

module bigbox

(input a,b,c,d, output z);

wire p, q, r;

assign q = ~c;

assign z = p ^ q ^ r;

assign p = a & b;

assign r = ~(c | d);

endmodule

module bigbox

(input a,b,c,d, output ___ z);

always @ ()

begin

end

endmodule

P

Q

R

Page 10

Blocking & Non-blocking

Digital Fundamentals

Verilog supports two types of assignments within

= blocking assignment
o Sequential evaluation
o Immediate assignment

<= non-blocking asignment
o Sequential evaluation
o Deferred assignment

always

always @ (*)

begin

x = y;

z = ~x;

end

always @ (*)

begin

x <= y;

z <= ~x;

end

1) Evaluate y, assign result to x
2) Evaluate ~x, assign result to z

1) Evaluate y, defer assignment
2) Evaluate ~x, defer assignment
3) Assign x and z with new values

Page 11

Behaviour x y z

Initial Condition 0 0 1

y changes

x = y

z = ~x

Behaviour x y z Deferred

Initial Condition 0 0 1

y changes

x <= y

z <= ~x

Assignment

Example

Digital Fundamentals

module example(input [2:0] A,

output reg [2:0] V, Z, W);

always @ (A)

begin

V = A | 3’b001;

Z <= V | 3’b100;

W = Z;

end

endmodule

Behaviour A V Z W Deferred

Initial Condition 000 001 101 000

A changes 010 001 101 000

Stmt 1 010 101 000

Stmt 2 010 011 000

Stmt 3 010 011 101

Assignment

An event occurs on A at simulation time :

o Stmt 1 is executed and V is assigned immediately

o Stmt 2 is executed and defer assignment to Z

o Stmt 3 is executed using old value of Z.

o Z is assigned.

Page 12

CLK D Q+

 0 0

 1 1

Verilog Time! – D-FF

Digital Fundamentals Page 13

D Q

CLK

D

Q

CLK D Q+

 0 0

 1 1

Verilog Time! – D-FF

Digital Fundamentals Page 14

D Q

module dff (input d, clk,

output __ q);

endmodule

always @ (posedge __)

always @ (negedge __)

always @ (posedge clk)

begin

end





Conceptually, the always block runs
once when a signal in sensitivity list
changes value.

begin and end behave like
parentheses/brackets for conditional
statements.

Anything assigned in an always block
must be declared as type reg

If posedge / negedge is used in the
sensitivity list, ALL signals must be used
with posedge / negedge.

CLK D Q+

 0 0

 1 1

Verilog Time! – D-FF

Digital Fundamentals Page 15

D Q

module dff (input d, clk,

output reg q);

endmodule

always @ (posedge __)

always @ (negedge __)

always @ (posedge clk)

begin

end





q <= d; or q = d;

Two D Flip-Flops…

Digital Fundamentals Page 16

D Q

_

Q

D Q

_

Q

‘1’ Behaviour q1 q2

Reset FFs 0 0

@ 1st rising edge

@ 2nd rising edge

Q1 Q2D1

clk 1 0

1 1

CLK D Q+

 0 0

 1 1

CLK

Q1

Q2

Behaviour Q1 Q2

0 0

After 1st rising edge

After 2nd rising edge

Assume initial outputs of FFs is ‘0’
and D1 is ‘1’.

Two D Flip-Flops… and Verilog!

Digital Fundamentals Page 17

D Q

_

Q

D Q

_

Q

‘1’

always @ (posedge clk)

begin

q1 = d1;

q2 = q1;

end

always @ (posedge clk)

begin

q1 <= d1;

q2 <= q1;

end

Q1 Q2D1

Behaviour Q1 Q2

0 0

After 1st rising edge

After 2nd rising edge

Behaviour Q1 Q2

0 0

After 1st rising edge

After 2nd rising edge

clk

CLK D Q+

 0 0

 1 1

Structural Modeling

o For modular designs, the top design is often specified as interconnected
blocks.

o Two examples below demonstrate port connection by position / name.

Digital Fundamentals

module mymodule (input a, b, output x);

...

endmodule

Page 18

module yourmodule (input c, d, output z);

…

endmodule

module ourmodule (input sw1, sw2,

output led1, led2);

mymodule M1 (sw1, sw2, led1);

yourmodule M2 (sw1, sw2, led2);

endmodule

module ourmodule (input sw1, sw2,

output led1, led2);

mymodule M1 (.a (sw1),

.b (sw2),

.x (led1));

yourmodule M2(.z(led2),

.c (sw1),

.d(sw2));

endmodule

mymodule

yourmodule

a

b
x

c

d
z

sw1

sw2

led1

led2

ourmodule

Port Connection by Position

Port Connection by Name

Basic Guidelines…

#1: When modeling sequential logic, use nonblocking
assignments.

#2: When modeling simple combinational logic, use
continuous assignments (assign).

#3: When modeling complex combinational logic, use
blocking assignments in an always block.

#3: When modeling both sequential and combinational logic
within the same always block, use nonblocking assignments.

#4: Do not mix blocking and nonblocking assignments in the
same always block.

#5: Do not make assignments to the same variable from
more than one always block.

Digital Fundamentals Page 19

Summary

o Operators (~, *, /, +, -, &, ^, |)

o Continuous assignments (assign)

o Procedural assignments (always)

o Blocking assignment (=)

o Non-blocking assignment (<=)

o Modeling of multiple D Flip-flops

o Structural Modeling

Digital Fundamentals Page 20

Try this!

assign is used for 

In continuous assignments,
the code is executed 

The code in the always
block is executed when 

always is used for 

<= is a 

endmodule Is always
paired with 

The sensitivity list follows
the 

Code in always block is
executed 

 always @.


when any RHS signal
changes

 module

 sequentially.


non-blocking procedural
assignment.

 continuous assignments.

 procedural assignments.


a signal in the sensitivity
list changes.

Verilog :
Simulation &
Synthesis
SELF - READING

Digital Fundamentals

What is Simulation?

How do we know our design actually works?

o Functional Simulation

(Xilinx)

Verilog Code

module
………. ……….
………. ……….
endmodule

Test Bench
call module
a1=9;
b1=1;
//wait for 10u
#10
b1=0;

a1

z1

save
the

world
.v

a2

z2

module savetheworld (input a1, … z1,

output a2, …,z2);

………. ………. ………. ………. ……….

………. ………. ………. ………. ……….

………. ………. ………. ………. ……….

endmodule

Digital Fundamentals Page 23

0

b1

b2

z2

10 20 30
t/µsMethod

o Designer applies input values to the code

o Simulator produces corresponding outputs in truth tables /

timing diagrams

o Simulators usually assume negligible propagation gate delays.

Now that our design is working,

time to save the world.

Synthesis :

1) Translation
o Code is transformed into

hardware (gates & wires).

2) Optimization
o Minimizes the amount of

hardware required.

3) Mapping
o Implements hardware on

target device.

What is Synthesis?

module savetheworld

(input a1,…z1, output a2,…,z2);

………. ………. ………. ……….

count <= count + 1 ;

endmodule

Digital Fundamentals Page 24

Translation + Optimization

Mapping

A
B

D

C count

FPGA
 D Q

“This looks like a
NOT gate. My
FPGA can do
some of these…”

